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Abstract. Modern document collections often contain groups of doc-
uments with overlapping or shared content. However, most information
retrieval systems process each document separately, causing shared con-
tent to be indexed multiple times. In this paper, we describe a new
document representation model where related documents are organized
as a tree, allowing shared content to be indexed just once. We show how
this representation model can be encoded in an inverted index and we
describe algorithms for evaluating free-text queries based on this encod-
ing. We also show how our representation model applies to web, email,
and newsgroup search. Finally, we present experimental results showing
that our methods can provide a significant reduction in the size of an
inverted index as well as in the time to build and query it.

1 Introduction

Modern document collections such as e-mail, newsgroups and Web pages, can
contain groups of documents with largely overlapping content. On the Web, for
example, studies have shown that up to 45% of the pages are duplicates – pages
with (nearly) identical content that are replicated in many different sites [6,
8, 22]. In e-mail collections, individual documents with significant amounts of
overlapping content are naturally created as people reply to (or forward) mes-
sages while keeping the original content intact. E-mail exchanges often contain
long chains or threads of replies to replies, causing early messages in the thread
to be replicated over and over. Similar threading patterns are also common in
newsgroup discussions.

Information Retrieval (IR) systems typically use an inverted text index to
evaluate free-text queries. During indexing, most IR systems process each docu-
ment separately, causing overlapping content to be indexed multiple times. This,
in turn, leads to larger indexes that take longer to build and longer to query. In
this paper, we describe a scheme where overlapping content is indexed just once
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and is logically shared among all documents that contain it. Thus, index space
and index build times are greatly reduced. This does not come at the expense
of any retrieval capabilities – queries can continue to be evaluated as if the full
text of each document was indexed separately. Query evaluation is also faster
due to the reduced index size.

Content is logically shared using a new document representation model where
related documents are organized as nodes in a tree. Each node in a document tree
can include content that it shares with all of its descendents as well as content
and meta-data that is not shared with its descendents. The former is referred
to as “shared content”, while the latter is referred to as “private content”. For
example, in an e-mail or newsgroup thread, its document tree will mirror the
history of the thread, with the root of the tree representing the first message
of the thread whose text is quoted (and shared) with subsequent messages. We
show how to encode our document representation model in a standard inverted
index, and describe algorithms for evaluating free-text queries based on this
encoding.

The basic operation of any inverted text index is the merging and intersection
of posting lists - the lists of documents associated with each of the terms. The goal
is to find the documents that contain terms appearing in a query. For efficiency,
there are data structures and algorithms that allow skipping over the portions
of the posting lists where no intersections might occur [5]. This operation is
sometimes called a zig-zag join [11] and it is most useful for conjunctive queries.
At its most basic, a zig-zag join of two lists proceeds by keeping two index cursors
(also known as posting list iterators), one for each list. At every step, the cursor
that points to a smaller document number is advanced at least as far as the
other cursor. When the cursors meet, an intersection is reported, and one cursor
is advanced to the next document in its list.

A key feature of our document representation model is that it can be easily
encoded into an inverted index in such a way that the standard algorithms for
evaluating free-text queries are still applicable. This is accomplished by defining
virtual index cursors that are aware of our representation model and its encoding.
In particular, the zig-zag join procedure uses virtual cursors as if they were
normal physical cursors, and furthermore virtual cursors are relatively simple to
implement on top of normal index cursors.

In the context of Web search, one may wonder why we opt to develop ma-
chinery for logically indexing all duplicates instead of simply retaining a single
representative of any group of duplicates and discarding the rest. Some search
engines (e.g., AltaVista as of 2000 [4]) adopted such a solution, which naturally
also implies that they avoid returning duplicate content in their result sets. How-
ever, keeping a single representative is problematic for queries that include, in
addition to some query terms, restrictions on meta-data such as URL, domain,
or last-modified-date. Such meta-data is typically different for each duplicate.
By sharing duplicate content and keeping the meta-data private, our represen-
tation model can support these queries, while at the same time indexing the



duplicate content just once and preventing the return of multiple copies of it in
the returned set of search results.

The main contributions of this paper include:

– A new document representation model where related documents are organized
as a tree, allowing overlapping or shared content to be indexed just once.

– An encoding of our representation model that can easily support a standard
zig-zag join for evaluating free-text queries on an inverted index.

– Descriptions of our representation model as applied to web, email, and news-
group corpora, showing its usefulness in practical IR applications.

– Experimental results on large datasets showing that our representation model
can provide a significant reduction in the size of an inverted index and in the
time to build and query it.

2 Background

In this section we briefly review some basic IR concepts and terminology.

Inverted Index. Most IR systems use inverted indexes as their main data struc-
ture for full-text indexing [21]. There is a considerable body of literature on
efficient ways to build inverted indexes (See e.g. [1, 3, 10, 13, 16, 21]) and
evaluate full-text queries using them (See e.g. [5, 15, 21]).

In this paper, we assume an inverted index structure. The occurrence of a
term t within a document d is called a posting. The set of postings associated
to a term t is stored in a posting list. A posting has the form <docid, payload>,
where docid is the document ID of d and where the payload is used to store
arbitrary information about each occurrence of t within d. Here, we use part
of the payload to indicate whether the occurrences of t are shared with other
documents and also to store the offsets of each occurrence.

Each posting list is sorted in increasing order of docid. Often, a B-tree [11] is
used to index the posting lists [10, 16]. This facilitates searching for a particular
docid within a posting list, or for the smallest docid in the list greater than a
given docid. Similarly, within a posting, term occurrences are sorted by offset
thus making intra-document searches efficient.

Free-text Queries. Most IR systems support free-text queries, allowing Boolean
expressions on keywords and phrase searches. Support for mandatory and for-
bidden terms is also common, e.g. the query +apple orange -pear indicates
that apple is mandatory, orange is optional, and pear is forbidden. Most sys-
tems also support fielded search terms, i.e. terms that should appear within the
context of a specific field of a document, e.g. +title:banana -author:plum.
Note that the queried fields are most often meta-data fields of the documents.

Document at a Time Evaluation In this paper, we assume the document-at-a-
time query evaluation model (DAAT) [20], commonly used in web search engines
[3]. In DAAT, the documents that satisfy the query are usually obtained via a
zig-zag join [11] of the posting lists of the query terms. To evaluate a free-text



query using a zig-zag join, a cursor Ct is created for each term t in the query, and
is used to access t’s posting list. Ct.docid and Ct.payload access the docid and
payload of the posting on which Ct is currently positioned. During a zig-zag join,
the cursors are moved in a coordinated way to find the documents that satisfy
the query. Two basic methods on a cursor Ct are required to do this efficiently:

– Ct.next() advances Ct to the next posting in its posting list.
– Ct.fwdBeyond(docid d) advances Ct to the first posting in its posting list

whose docid is greater than or equal to d. Since posting lists are ordered by
docid, this operation can be done efficiently.

Scoring. Once a zig-zag join has positioned the cursors on a document that sat-
isfies the query, the document is scored. The final score for a document usually
contains a query-dependent textual component, which is based on the docu-
ment similarity to the query, and a query-independent static component, which
is based on the static rank of the document. In most IR systems, the textual
component of the score follows an additive scoring model like tf × idf for each
term, whereas the static component can be based on the connectivity of web
pages, as in PageRank [3], or on other factors such as source, length, creation
date, etc.

3 The Document Representation Model

In our document representation model each group of related documents is or-
ganized as a document tree; the corpus being indexed is therefore a forest of
document trees.

Each node in a document tree corresponds to a document that can include
shared and private content. The private content of a document d is unique to d,
whereas the shared content of d is inherited by its descendants. Sharing occurs
top-down. Therefore, the document at a particular node effectively contains the
shared and private content of that node plus the union of all its ancestors’ shared
content.

Our representation model is illustrated in Figure 1. This might correspond to
an email exchange starting with d1. It was quoted by two independent replies d2

and d4. It turn, d2 was quoted in full (including d1) by d3, while d4 was quoted
in full by d5 and d6.

In Figure 1, di corresponds to the document whose docid = i, while Si and
Pi correspond to the shared and private content of document di, respectively.
The content of d1 is S1 and P1, while the content of d3 is S3 and P3 plus S1 and
S2.

We define a thread as the documents on a root-to-leaf path in a document
tree. In Figure 1, there are three threads, d1-d2-d3, d1-d4-d5, and d1-d4-d6.

Two functions on docid are needed for query evaluation:

– root(docid d) returns the root of d’s document tree.
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Fig. 1. Example of a document tree

– lastDescendant(docid d) returns the last descendant of the sub-tree rooted
at d. If d is a leaf, then d itself is returned.

Figure 1 shows the root() and lastDescendant() values for the documents
in our example. In principle, our representation model does not impose any
restriction on the assignment of docid’s across document trees. However, the
query evaluation algorithm described is Section 5 requires the docid’s within a
document tree to be assigned sequentially using a depth first traversal. This
guarantees that all documents in the range {di+1, . . . , lastDescendant(di)} are
descendants of document di, and this is the assumption we are making from
now on.

The main limitation of our document representation model is that related
documents can only share content in a top-down, hierarchical manner. Nonethe-
less, we will show that there are many applications such as web, email, and
newsgroup search that can still benefit from our representation.

4 Index Encoding

To support our document representation model, we use a standard inverted
index with a few additions. First, each posting within the inverted index needs
to indicate whether it is shared or private. This can be done by adding one bit
to the payload. Second, the root() and lastDescendant() functions need to be
implemented, which can be done using an in-memory table or an external data
structure that allows efficient access.

Figure 2 illustrates how the posting lists might look for an email thread
matching d1-d2-d3 in the previous example. In the posting lists, the letter “s”
indicates a shared posting, while the letter “p” indicates a private posting. Doc-
ument d1 corresponds to the original message, while d2 is a reply to d1, and d3

is a reply to d2.
In Figure 2, the content in the header fields is treated as private, while the

content in the body is shared. For example, the posting for “andrei” is private to



From: marcus

To: ronny

Subject: re:paper

not yet!

> From: ronny

> To: marcus

> Subject: re:paper
> well, did you?

>

>> From: andrei

>> To: ronny, marcus
>> Subject: paper

>> did you read it? 

Who Date Subject
andrei 2/1/2005 paper

ronny 2/1/2005 Re: paper

marcus 2/2/2005 Re: paper

Thread view

Last email in the

thread (message d3)

andrei: <1, p>

did: <1, s>
it: <1, s>

marcus: <1, p>, <2, p>, <3, p>

not: <3, s>

paper: <1, p>, <2, p>, <3, p>
read: <1, s>

ronny: <1, p>,<2, p>, <3, p>

well: <2, s>

yet: <3, s>

you: <1, s>

Posting lists

d1

d2

d3

d2

d3

d1

From: marcus

To: ronny

Subject: re:paper

not yet!

> From: ronny

> To: marcus

> Subject: re:paper
> well, did you?

>

>> From: andrei

>> To: ronny, marcus
>> Subject: paper

>> did you read it? 

Who Date Subject
andrei 2/1/2005 paper

ronny 2/1/2005 Re: paper

marcus 2/2/2005 Re: paper

Thread view

Last email in the

thread (message d3)

andrei: <1, p>

did: <1, s>
it: <1, s>

marcus: <1, p>, <2, p>, <3, p>

not: <3, s>

paper: <1, p>, <2, p>, <3, p>
read: <1, s>

ronny: <1, p>,<2, p>, <3, p>

well: <2, s>

yet: <3, s>

you: <1, s>

Posting lists

d1

d2

d3

d2

d3

d1

(a) The inverted index

P1:

andrei: <1, p>
marcus: <1, p>

paper: <1, p>

ronny: <1, p>

S1:

did: <1, s>
it: <1, s>

read: <1, s>

you: <1, s>

P1:

andrei: <1, p>
marcus: <1, p>

paper: <1, p>

ronny: <1, p>

S1:

did: <1, s>
it: <1, s>

read: <1, s>

you: <1, s>

P2:

marcus: <2, p>

paper: <2, p>

ronny: <2, p>

S2:

well: <2, s>

P2:

marcus: <2, p>

paper: <2, p>

ronny: <2, p>

S2:

well: <2, s>

P3:

marcus: <2, p>
paper: <2, p>

ronny: <2, p>

S3:

not: <3, s>
yet: <3, s>

P3:

marcus: <2, p>
paper: <2, p>

ronny: <2, p>

S3:

not: <3, s>
yet: <3, s>

d1

d2

d3

(b) The document tree

Fig. 2. An example of index encoding for a thread d1-d2-d3

d1, since it appears in the “From” field, whereas the posting for “did” is shared,
since it appears in the body. In the latter case, d1 shares the posting for “did”
with its descendants, that is, d2 and d3. More generally, a document di shares
a posting for a term t with document dj if the posting is marked as shared
and dj ∈ {di, . . . , lastDescendant(di)} or if the posting is marked as private and
di = dj .

One subtle point to notice in Figure 2 is that, although the terms “did” and
“you” appear in both d1 and d2, only one posting for them is indexed, namely,
the one for d1. This is because d1 already shares those postings with d2, which
in turn means it would be redundant to index them twice. The virtual cursor
algorithms that we will present later assume that these redundant postings do
not appear in the index. However, for scoring, their occurrences and an indication
of which document they belong to are reflected in the payloads. For example,
both occurrences of “did” (for d1 and d2) would appear in d1’s payload, with an
indication of the document they actually appear in. When scoring d1 the system
will ignore the occurence that is tagged with d2, whereas when scoring d2, both
occurences will be taken into account.

5 Query Evaluation

We have described how our representation model can be encoded in an inverted
index. Given this encoding, we now show how free-text queries can be evaluated
using a standard zig-zag join. We allow queries to contain required, forbidden,
and optional terms. The following high-level steps, which are described in the
remainder of this section, are repeated during query evaluation:



– Enumerate candidates, that is, identify documents containing all required
terms and none of the forbidden terms.

– Score the candidates, taking into account all occurrences of the query terms,
including optional terms.

– Choose the next docid to resume searching for candidates.

5.1 Enumerating Candidates

A zig-zag join on required and forbidden terms is used to enumerate candidate
documents. We define virtual index cursors, which look like normal cursors to a
zig-zag join but are aware of our representation model and its encoding. A virtual
cursor for a term t enumerates the same documents that a physical cursor for
t would if shared content had been indexed multiple times. For example, in
Figure 2(b), a virtual cursor for “well” would enumerate d2 and d3.

We create a “positive” virtual cursor for each required term, and a “negative”
virtual cursor for each forbidden term. The latter allows a zig-zag join to treat
forbidden terms the same as required terms.

Recall that two basic cursor methods are required for a zig-zag join, namely,
next() and fwdBeyond(). The algorithms for the positive and negative versions
of these methods are shown in Figure 3 and Figure 4, respectively. In the algo-
rithms, this.docid corresponds to the virtual cursor’s current position, while Cp

corresponds to the underlying physical cursor.

Positive next() and fwdBeyond()

Turning to Figure 3, the algorithm for positive next() is relatively straightfor-
ward, except when Cp is on a shared posting. In that case, all of Cp’s descen-
dants, which inherit the term from Cp, are enumerated (lines 2–4) before Cp is
physically moved (line 7).

The algorithm for positive fwdBeyond(d) relies on the physical cursor method
fwdShare(), which will be describe shortly, to do most of its work. The call to
Cp.fwdShare(d) tries to position Cp on the next document that shares the term
with d (line 6). If there is no such document, fwdShare() returns with Cp posi-
tioned on the first document beyond d.

Negative next() and fwdBeyond()

The algorithm for negative next() is shown in Figure 4. It works by trying to keep
Cp positioned ahead of the virtual cursor. The documents d ∈ {this.docid, . . . , Cp−
1}, which do not contain the term, are enumerated until the virtual cursor catches
up to Cp (line 4). When that happens, the virtual cursor is forwarded past the
documents that inherit the term from Cp (lines 5–9), after which Cp is moved
forward (line 10). These steps are repeated until Cp moves ahead of the virtual
cursor again.

The algorithm for negative fwdBeyond(d) calls fwdShare(d) to position Cp

on the next document that shares the term with d (line 6). Then next() is called



to position the virtual cursor on the next document that does not contain the
term (line 14).

Physical fwdShare()

The algorithm for fwdShare(d) is shown in Figure 5. It keeps looping until the
physical cursor moves beyond d or to a posting that shares the term with d

(line 1). The movement of the physical cursor depends on whether the cursor
lies outside d’s document tree (lines 5–7), within the tree but outside d’s thread
(lines 9–11), or is on a private posting (lines 13–15).

PositiveVirtual::next()

// Forward the virtual cursor to the next

// document that contains the term.

1. last = lastDescendant(Cp.docid);

2. if (Cp.payload is shared and this.docid < last) {

3. // not done enumerating descendants of Cp

4. this.docid += 1;

5. } else {

6. // advance Cp and reset docid

7. Cp.next();

8. this.docid = Cp.docid;

9. }

PositiveVirtual::fwdBeyond(docid d)

// Forward the virtual cursor to the next document

// at or beyond document d that contains the term.

1. if (this.docid >= d) {

2. // already beyond d, so nothing to do

3. return;

4. }

5. // try to forward Cp so it shares the term with d

6. Cp.fwdShare(d);

7. // set docid to Cp if it

8. // is beyond d, else set it to d

9. this.docid = max(Cp.docid, d);

Fig. 3. positive next() and fwdBeyond()

5.2 Correctness Proof for next() and fwdBeyond()

Because of space limitations, we can only provide a sketch of the correctness
proof for virtual next() and fwdBeyond(). The proof follows from:

Theorem 1. On a posting list generated from our representation model, the vir-
tual next() and fwdBeyond() methods accurately simulate the behavior of next()
and fwdBeyond() on a standard posting list.



NegativeVirtual::next()

// Forward the virtual cursor to the

// next document not containing the term.

1. this.docid += 1;

2. // keep incrementing the cursor until it

3. // is on a document not containing the term

4. while (this.docid >= Cp.docid) {

5. if (Cp.payload is shared) {

6. this.docid = lastDescendant(Cp.docid) + 1;

7. } else {

8. this.docid = Cp.docid + 1;

9. }

10. Cp.next();

11. }

NegativeVirtual::fwdBeyond(docid d)

// Forward the virtual cursor to the next

// document at or beyond the document d

// that does not contain the term.

1. if (this.docid >= d) {

2. // already beyond d, so nothing to do

3. return;

4. }

5. // try to forward Cp so it shares the term with d

6. Cp.fwdShare(d);

7. this.docid = d;

8. if (Cp.docid > d) {

9. // document d does not contain the term

10. return;

11. }

12. // document d contains the term

13. // call next() to move the cursor and Cp

14. this.next();

Fig. 4. negative next() and fwdBeyond()

Proof sketch: The proof is based on proving the invariants we keep for the
two types of virtual cursors, namely, for positive ones, that all docid’s between the
current physical cursor position and its last descendant are valid return values,
and that in the negated case, all docid’s between the current virtual position and
the physical cursor position are valid return values. These invariants guarantee
that our methods do not return spurious results. We further prove that we never
skip valid results, completing the proof. ut

5.3 Scoring Candidates

Our representation model does not impose any restriction on the scoring func-
tion. However, the scoring function could take thread information into account.



Physical::fwdShare(docid d)

// Try to forward the physical cursor so it shares

// the term with document d. If there is no such

// document, return with the cursor positioned on

// the first document beyond d.

1. while (this.docid <= d and this.docid

does not share the term with d) {

2. root = root(d);

3. last = lastDescendant(this.docid);

4. if (this.docid < root) {

5. // the cursor is not in the

6. // same document tree as d

7. this.fwdBeyond(root);

8. } else if (last < d) {

9. // in the same document tree

10. // but not in the same thread

11. this.fwdBeyond(last + 1);

12. } else {

13. // in the same thread, but private

14. // posting on a different document

15. this.next();

16. }

17. }

Fig. 5. fwdShare() on a physical cursor

For example, documents toward the bottom of a document tree could be assigned
a lower score.

Candidate enumeration returns with the virtual cursors positioned on post-
ings for a candidate document d. Scoring usually needs to take into account all
the occurrences of each query term t in d, including optional terms. Given a
virtual cursor Ct, this can be done by iterating all the occurrences of t in the
posting’s payload. Since Ct is virtual, the physical cursor Cp associated with Ct

would be used to access the payload.

If the textual component of the scoring function is expensive to compute, we
can remember the textual score of a document d to speedup the scoring of other
candidate documents in d’s thread. For example, suppose di has been scored
and now another candidate dj on the same thread needs to be scored. We can
compute its textual score as:

Scoretext(dj) = PScore(dj) +
∑

dk∈path(di,dj)

SScore(dk)

Here, PScore() and SScore() are the private and shared parts of the textual
score, respectively, and path(di, dj) is the path from di to dj in the document
tree.



5.4 Choosing the Next Docid

After a candidate document d has been scored, the next document to resume
searching for candidates has to be chosen. This step depends on the retrieval
policy of the system, which may be tuned for performance or a particular appli-
cation’s requirements. Possible choices include:

– Resume from the document d + 1. This allows all the qualifying documents
in a document tree to be returned.

– Resume from document lastDescendant(root(d)) + 1. This allows only the
first qualifying document in a document tree to be returned.

– Resume from document lastDescendant(d) + 1. This is a hybrid of the first
two approaches, allowing only the first qualifying document in a thread to
be returned.

6 Applications

This section describes how our document representation model can be applied
to web and email search, showing its usefulness in practical IR applications.

6.1 Web Search

Studies have shown that up to 45% of web pages are duplicates and near dupli-
cates [6, 8]. On the web scale, repeated indexing of duplicate content is a huge
waste of resources, and furthermore, users are seldom interested in seeing dupli-
cates in the search results. Hence, web search engines need some way to identify
and filter duplicates from results. To identify duplicates, a signature is typically
computed for each document by hashing its content. These signatures are then
used to identify groups of duplicate documents, that is, duplicate groups. To fil-
ter duplicates from search results, one of the following techniques is commonly
used:

– Only the master of each duplicate group is indexed and returned in searches.
The master of a duplicate group can be chosen arbitrarily or by using some
heuristic, like picking the duplicate with the highest static rank. (This tech-
nique has been used in the AltaVista search engine.)

– All documents in a duplicate group are indexed. A post-processing filter is
used to make sure that only one document per duplicate group appears in
search results. Optionally the entire group is presented to the user.

By indexing only masters, the inverted index is kept small and query evalu-
ation can ignore duplicates. However, queries that include restrictions on meta-
data become problematic. For example, suppose that for performance reasons,
IBM has mirrored its main HR web page at us.ibm.com/hr.html and canada.

ibm.com/hr.html, but the US version has been chosen by the US-centric search
engine as the master. Then the query hr domain:canada.ibm.com that asks for



web pages from IBM Canada that have the term “hr” in their content, will not
return the main page. This type of domain restriction might be explicit in the
query, or it might have been added to the query by the query interface without
the user knowledge, based, say on user’s location or IP address.

Conversely, if all the documents in a duplicate group are indexed, queries
that include restrictions on meta-data do not pose a problem, but then the same
content must be indexed multiple times and the query evaluation runtime has
to filter duplicates from results. This filtering might be expensive, since it has
to be done in a separate post-processing step.

Using our document representation model, it becomes possible to index du-
plicate content just once, while still allowing queries to be answered as if all the
duplicates were indexed. This is done by creating a linear tree for each duplicate
group, in which the master of the group serves as the root and is thus indexed
with both its (shared) content and its private meta-data. The rest of the docu-
ments in the duplicate group follow in arbitrary order, where only the (private)
meta-data of each duplicate (such as URL, creation date, geo-location, etc) is
indexed. Note that this representation naturally applies to documents that have
no duplicates, i.e. to duplicate groups of size 1.

Since duplicates are not returned in search results, an added benefit of using
our representation is that the postings for all the remaining duplicates in a
duplicate group can be skipped during query evaluation as soon as one of them
has been returned. As our experimental results will show, this can dramatically
improve query performance.

6.2 Email and Newsgroup Search

In most email and newsgroup clients replies include the full content of the original
message. As illustrated earlier in Figure 2(a), our document representation model
can support email or newsgroup search by simply creating a document tree for
each message thread with a structure that mirrors the thread’s history.

Unfortunately for our aims, most email and newsgroup clients allow users to
edit the reply history, which potentially prevents any sharing between a mes-
sage and its reply. Although such editing is common, our experimental results
will show that 33% of the email messages in the Enron dataset [14] include an
unedited reply history.

Another application for our document representation model is indexing on
centralized email servers. For example, suppose an email message is sent to N

users on the same server. Rather than index the message and its attachments
N times, the message could be indexed as a two-level document tree, with the
message body and attachments appearing as the shared root of the tree, and
the meta-data of each recipient appearing as a separate, private leaf in the tree.
Presumably, security information would be stored in the private meta-data and
security meta-terms added to queries by the server to ensure that users could
only search their own email.



Num Pct. Meta Content Index w/o Index w/ Expected Actual
Docs (K) Dups Data (GB) Data (GB) Dups (GB) Dups (GB) Comp. Comp.

500 36% 1.2 3.7 2.5 3.6 72% 69%

1000 37% 2.3 7.9 5.1 7.4 71% 69%

1500 41% 3.5 11.1 7.1 11.0 69% 64%

2000 43% 4.8 13.9 8.8 13.0 68% 68%

2500 44% 6.0 19.9 11.0 16.0 66% 69%

Table 1. Index sizes with and without duplicates

7 Experimental Results

In this section, we present experimental results for web and email search. We
implemented our algorithms on the Trevi search engine [10], which is currently
used to support web searches on IBM’s global intranet. Experiments were run
on a two-way SMP with dual 2.4 Ghz Intel Xeon processors running Linux. The
disk storage was configured as two physical RAID arrays, each with 6 drives.

7.1 Results for Web Search

For this set of experiments, we built a series of inverted indexes from snapshots
of IBM’s intranet, varying the corpus size between 500K to 2.5M documents6.
These sizes are indicative since the actual IBM intranet has about 15M doc-
uments (before duplicate elimination). We built each index with and without
duplicates, using our document representation model in the latter case, as de-
scribed in Section 6.

For each dataset, Table 1 shows the percentage of duplicates in the index,
the overall amount of meta-data, the overall amount of content data, the size of
the index without duplicates, the size of the index with duplicates, the expected
compression ratio of the index without duplicates to the index with duplicates,
and the actual measured compression ratio. The expected compression ratio can
be computed as:

ExpectedComp =
MetaData + ContentData · (1 − PctDups)

MetaData + ContentData

Table 1 shows that our representation model reduced index sizes by roughly
30% on the IBM intranet data. Note that the actual compression ratio was
better than expected in some cases. This was because content tokens, which
include payload and offset information, tended to be bigger than than meta-
data tokens, whereas our calculation of the expected compression assumes all
postings are of equal size.

6 When selecting a subset from the IBM intranet corpus we selected complete dupli-
cate groups, so that the ratio of duplicate documents in all subsets has the same
expectation, irrespective of the subset size.



Num Index w/o Index w/ Pct.
Docs (K) Dups (sec) Dups (sec) Decrease

500 540 780 31%

1000 1020 1440 29%

1500 1500 2340 36%

2000 1800 2940 39%

2500 2160 3540 39%

Table 2. Index build performance

The time to build an inverted index is an important metric in web search,
since a decrease in the time to build an index allows it to be refreshed more
frequently [10]. Table 2 shows the time to build each index on the IBM intranet
data. Our indexing algorithm [10] is designed for batch builds of complete in-
dexes, and hence a complete build was done for each experiment, rather than
incrementaly growing an existing index. The build times reported do not in-
clude the time spent on separate analysis phase was run to identify duplicates.
However, note that this phase would be necessary to filter duplicate results,
regardless of whether our representation model was being used.

Table 2 reflects the time to scan the dataset (with duplicates) and then build
the index (with or without duplicates). On average, it took about 30% to 40%
less time to build an index without duplicates because of its smaller size. This is
in keeping with the results in [10], which showed that the time to build an index
is mostly I/O bound and a linear function of its size.

To study query performance, we ran one- and two-term queries on the dataset
with 2.5M documents. We felt that this was a realistic set of experiments, since
the average query on the IBM intranet contains only 1.2 terms. The single-term
queries were on syntheticaly generated terms. 5 synthetic terms were added to
the documents with selectivities that ranged from 20% to 100% (i.e., for each
document, we added term t20% with probability .2, a term t40% with probability
.4, etc.). We then used these five terms in five single-term queries. Note, however,
that a query on such terms actually returned fewer documents than the expected
fraction of the corpus size, because duplicates were filtered from the final result.

Query performance is strongly correlated to the number of physical cursor
moves on the index – fewer moves translates into better query performance.
Figure 6 shows the number of physical cursor moves and the execution time for
single-term queries on a synthetic term. The results show that the number of
cursor moves decreased by roughly 30% to 45% when our representation model
was used. This is because the remaining postings in a duplicate group can be
skipped as soon as one of them is returned. The improvement in execution time
was even more pronounced, with a decrease of up to 80%. This was because of
the combined effect of fewer cursor moves along with having a smaller index,
which resulted in less CPU and I/O.

Figure 7 is provided to help understand the results in Figure 6. It illustrates
how our representation model can decrease the number of physical cursor moves.
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Fig. 7. Duplicate filtering at the index level

As shown, there are two document groups d1-d2-d3-d4 and d5-d6. Using our
representation model, duplicates d2, d3, and d4 can be skipped as soon as d1 is
enumerated. In addition to decreasing I/O, this means that those documents do
not need to be filtered from the final results by the upper layers of the system,
which in turn decreases CPU requirements. Our representation model effectively
allows the filtering of duplicates to be pushed down to the physical index level,
rather than doing it in the upper layers of the system.

Figure 8 shows the number of physical cursor moves and the execution time
for two-term queries. For variety, real query terms on both content and meta-
data were used in this case. The results for two-term queries were similar to those
for one-term queries, with improvements of up to 80% in execution time when
our representation model was used. Again, this was because of the combined
effect of fewer cursor moves on a smaller index.

7.2 Results for Email Search

We used the Enron email dataset [14] to study how well our document repre-
sentation model can be applied to email search. This dataset contains 517,431
emails that were made public in the Enron fraud investigation. Unfortunately,
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Fig. 8. Results for two-term queries

Size (MB)

Meta Data 430

Content Data 910

Original Data 580

Table 3. Analysis of the Enron dataset

we did not have an email search engine available to us that could be used for
experimentation. Consequently, we only used the Enron dataset to judge the
potential effectiveness of our method on a real email collection. As discussed
in Section 6, the effectiveness of our method in email search depends on the
percentage of email threads that include an unedited reply history.

An analysis of the Enron dataset showed that 61% of its email messages
belong to some thread, and that 33% of the messages in a thread included an
unedited reply history. In Table 3 we show the overall amount of meta-data, the
overall amount of content data, and the amount of content data that was left
when the reply history was removed (the “Original Data”). We treated anything
that appeared in email headers as meta-data.

Comparing the size of an inverted index for the Enron dataset with our
representation model to one without it, the expected compression ratio can be
computed as:

ExpectedComp =
MetaData + OriginalData

MetaData + ContentData

This works out to 75%. In other words, using our representation method, an
inverted index for the Enron data set would be roughly 25% smaller, which is
comparable to what was observed on the IBM intranet data. We believe that
the improvement in query performance would be comparable as well, due to the
combined effect of fewer cursor moves on a smaller index.

It worth noting that, for email search, Gmail [12] returns only one email
message per thread. Using our document representation model, this would allow
the remaining messages in a thread to be skipped during query evaluation as



soon as one of them was returned. As our results on the IBM intranet data
showed, this kind of skipping can dramatically improve query performance.

8 Related Work

Much of the motivation for developing our document representation model is to
save index space. In this respect, our representation model can be viewed as a
special type of an index compression that relies on explicit knowledge of the data.
Different compression methods as well as the trade offs involved in using them,
have been widely published [7, 9, 17, 18, 23]. However, we regard our scheme as
independent of those methods, and indeed it can be used in combination with
them.

This paper focused on the problem of efficiently building and querying an
inverted index once the shared content has already been identified. How to iden-
tify the shared content is beyond the scope of this paper but is related to the
problem of identifying duplicates in a text corpus [2, 4, 6]. In the case of email or
newsgroup threads, identifying shared content may be aided by cross-reference
information in message headers.

Our representation model is particularly effective in email or newsgroup
search. Recently, email search like that provided by Gmail [12] and Bloomba [19]
has become quite popular. Unfortunately, the Gmail architecture is not public,
and although Bloomba is tailored for indexing and searching email, it does not
seem to do anything special for the shared content in email threads.

9 Conclusions

In this paper, we described a new document representation model where related
documents are organized as a tree, allowing shared content to be indexed just
once. A key feature of our representation is that it can easily support the stan-
dard zig-zag join algorithm for processing free-text queries on an inverted index.
We described how this can be accomplished by defining virtual index cursors
that are aware of our representation model and its encoding.

Our model can be applied to practical IR applications such as web, email, and
newsgroup search. Using data from the IBM intranet, we provided experimental
results showing that our method was able to reduce the size of the inverted index
by roughly 30% and improve the performance of one- and two-term queries by
up to 80%. The improvement in query performance was due to the synergistic
effect of fewer cursor moves on a smaller index.

For future research, we hope to extend this work to improving XML retrieval.
In particular, we would like to index XML documents efficiently while enabling
search at the individual tag level, i.e. to retrieve the tag within each document
that is most relevant to the query. To that effect,we can represent each document
using its DOM tree, and share the content of each node (tag) with the content of
its ancestors (enveloping tags). Note that this down-up model of content sharing
is exactly the opposite of the top-down sharing model discussed in this paper.
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